Chapter 2: 1D Kinematics Tuesday January 13th

- Motion in a straight line (1D Kinematics)
- Average velocity and average speed
-Instantaneous velocity and speed
- Acceleration
- Short summary
-Constant acceleration - a special case
-Free-fall acceleration

Reading: up to page 25 in the text book (Ch. 2)

Ch.2: Motion in one-dimension

-We will define the position of an object using the variable x, which measures the position of the object relative to some reference point (origin) along a straight line (x-axis).

Average velocity and speed

$$
v_{\text {avg }}=\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}
$$

- Like displacement, the sign of $v_{a v g}$ indicates direction Average speed $s_{\text {avg }}$:

$$
s_{\text {avg }}=\bar{s}=\frac{\text { total distance }}{\Delta t}
$$

- $s_{\text {avg }}$ does not specify a direction; it is a scalar as opposed to a vector \&, thus, lacks an algebraic sign - How do $\boldsymbol{v}_{\text {avg }}$ and $s_{\text {avg }}$ differ?

Instantaneous velocity and speed

Acceleration

- An object is accelerating if its velocity is changing

Average acceleration $a_{a v g}$:

$$
a_{a v g}=\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}
$$

Instantaneous acceleration a:

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}=\frac{d v}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}
$$

- This is the second derivative of the \boldsymbol{x} vs. t graph
- Like \boldsymbol{x} and \boldsymbol{v}, acceleration is a vector
- Note: direction of a need not be the same as v

Summarizing

Displacement:

$$
\Delta x=x_{2}-x_{1}
$$

Average velocity: $\quad v_{a v g}=\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{2}-t_{1}}$
Average speed:

$$
s_{a v g}=\bar{s}=\frac{\text { total distance }}{\Delta t}
$$

Instantaneous velocity:

$$
v=\frac{d x}{d t}=\text { local slope of } x \text { versus } t \text { graph }
$$

Instantaneous speed: magnitude of v

Summarizing

Average acceleration: $\quad a_{a v g}=\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}$
Instantaneous acceleration:

$$
a=\frac{d v}{d t}=\text { local slope of } v \text { versus } t \text { graph }
$$

In addition:

$$
a=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}=\text { curvature of } x \text { versus } t \text { graph }
$$

SI units for a are $\mathrm{m} / \mathrm{s}^{2}$ or $\mathrm{m} . \mathrm{s}^{-2}$ ($\mathrm{ft} / \mathrm{min}^{2}$ also works)

Constant acceleration: a special case

Constant acceleration: a special case

Constant acceleration: a special case

Constant acceleration: a special case

Constant acceleration: a special case

Constant acceleration: a special case

Is there any significance to this?
0
t

Constant acceleration: a special case

(t) Hang on... There seems to $a(t)$ be a pattern here...
a
$v-v_{0}=$ Area $=a t$

Constant acceleration: a special case

It is rigorously true (a mathematical fact):

$$
\begin{gathered}
v-v_{0}=\text { Area under } a(t) \text { curve }=a t \\
x-x_{0}=\text { Area under } v(t) \text { curve }=v_{0} t+1 / 2 a t^{2}
\end{gathered}
$$

What we have discovered here is integration or calculus...

$$
\begin{gathered}
a(t)=\frac{d v}{d t} \Delta v=\int_{v_{0}}^{v} d v=\int_{0}^{t} a d t=\text { Area under curve } \\
v=v_{0}=a t
\end{gathered}
$$

Constant acceleration: a special case

It is rigorously true (a mathematical fact):

$$
v-v_{0}=\text { Area under } a(t) \text { curve }=a t
$$

$$
x-x_{0}=\text { Area under } v(t) \text { curve }=v_{0} t+1 / 2 a t^{2}
$$

What we have discovered here is integration or calculus...

$$
\begin{aligned}
v(t)=\frac{d x}{d t} \Delta x & =\int_{x_{0}}^{x} d x
\end{aligned}=\int_{0}^{t} v(t) d t=\int_{0}^{t}\left(v_{0}+a t\right) d t=\text { Area }
$$

Constant acceleration: a special case

Equations of motion for constant acceleration

 One can easily eliminate either $a_{\text {, }} t$ or v_{o} by solving Eqs. 2-7 and 2-10 simultaneously.Equation
number
2.7

Equation
$v=v_{0}+a t$
$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
2.10
2.11
2.9

$$
\begin{aligned}
& x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t \\
& x-x_{0}=v t-\frac{1}{2} a t^{2}
\end{aligned}
$$

Missing quantity

$$
v
$$

$$
t
$$

Important: equations apply ONLY if acceleration is constant.

A Real Example: Free fall acceleration

-If one eliminates the effects of air resistance, one finds that ALL objects accelerate downwards at the same constant rate at the Earth's surface, regardless of their mass (Galileo).
-That rate is called the free-fall acceleration g.
-The value of g varies slightly with latitude, but for this course g is taken to be $9.81 \mathrm{~ms}^{-2}$ at the earth's surface.
\cdot It is common to consider y as increasing in the upward direction. Therefore, the acceleration a due to gravity is in the negative y direction, i.e. $a_{y}=-g=-9.8 \mathrm{~ms}^{-2}$.

NOTE: There is nothing special about the parameter y. You can use any labels you like, e.g., x, z, x, etc.. The equations we have derived work quite generally.

Equations of motion for constant acceleration

 One can easily eliminate either $a_{y,} t$ or $v_{o y}$ by solving Eqs. 2-7 and 2-10 simultaneously.Equation number Equation
2.7

$$
v_{y}=v_{0 y}+a_{y} t
$$

2.11

$$
y-y_{0}=v_{0 y} t+\frac{1}{2} a_{y} t^{2}
$$

$$
v_{y}^{2}=v_{0 y}^{2}+2 a_{y}\left(y-y_{0}\right)
$$

$$
y-y_{0}=\frac{1}{2}\left(v_{0 y}+v_{y}\right) t
$$

$$
y-y_{0}=v_{y} t-\frac{1}{2} a_{y} t^{2}
$$

A Real Example: Free fall acceleration

A Real Example: Free fall acceleration

